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The closing mechanism of the natural aortic valve is investigated experimentally in 
a two -dimensional analogue. The interaction between the sinus content and the aortic 
flow when the latter is decelerating is studied for different Strouhal numbers: for high 
Strouhal numbers the sinus content rotates virtually as a rigid mass around the centre- 
line whereas for low Strouhal numbers,.corresponding to  the human situation, the 
cusp remains straight and slowly rotates around its point of attachment. Simple 
theoretical models based on the phenomena observed are proposed. Acceptable 
agreement between theory and experiment is found. 

1. Introduction 
The aortic valve is one of the four valves controlling the fluid motion through the 

heart. It is positioned a t  the outlet of the left ventricle, which pumps blood into the 
aorta. This valve is shown diagrammatically in figure 1 .  It has three leaflets (cusps) 
and behind each leaflet there is a cavity, the sinus of Valsalva. The leaflets are very 
thin (0.1 0.3 mm), non muscular and very flexible in the axial direction. The human 
left ventricle contracts and expands about once a second under no1 ma1 conditions. 
The contraction phase of the left ventricle is called systole and the relaxation phase 
diastole, Figure 2 shows the blood flow in the aorta as a function of time; during the 
first part of systole there is an acceleration of the liquid, but when the pressure in the 
left ventricle starts decreasing, the liquid decelerates. At the very beginning of 
diastole there is a small reversed flow in the aorta. When the valve is closed, however, 
the velocity of the liquid in the aortic entrance is zero. During diastole the aortic valve 
has to withstand a mean pressure difference of about 80 mmHg. 

The typical shape of the aortic valve and the role of the sinuses have attracted 
scientific interest for a long period starting with Leonard0 da Vinci in 1513. Much 
more recently, it was Bellhouse & Talbot (1969) who recognized the important 
function of the sinus cavity in valve operation. From their model experiments, they 
observed that the closing of the valve has already started during the deceleration 
phase of the aortic flow, the valve being almost closed a t  the end of systole. A small 
reversed flow of about 2 Oi0 of the total forward flow then readily completes the closure. 
According to  their observations, the ratio of the total reversed flow to the forward 
flow in the absence of the sinuses is about 25%. The importance of this well-timed 
v alve closure for the load on the valve leaflets was discussed by Spaan et al. (1  975). 

The shape of Valsalva’s sinus was carefully examined by Reid (1970) and Swanson 
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FIGURE 1. Diagram of the aortic valve and'the sinus of Valsalva. 
(according to  Bellhouse & Talbot). 

-Time 

I I 

FIGURE 2. Diagram of the aortic flow as a function of time. 

& Clark (1974). According to Reid, the sinus is a virtually hemispherical cavity with 
a radius equal to that of the aorta, the cusp length being about three-quarters of the 
sinus diameter. Swanson & Clark, however, concluded that the cavity height is about 
half the value reported by Reid. 

Observations of the leaflet motion in vivo by means of high-speed cineangiograms 
were reported by Mercer (1 973). 

The fluid dynamics of the opening of the aortic valve have been investigated by 
Hung & Schuessler (1977). They studied the dynamic interaction of the leaflet motion 
with the accelerating aortic flow on the basis of an inviscid flow model. Gillani & 
Swanson (1 976) presented a numerical solution of the Navier-Stokes equations for an 
accelerating flow field in an axisymmetric duct of variable axial geometry, representing 
the aorta and sinuses. They ignored the possible impedance of the valve leaflets on the 
flow. Viscous effects along the walls appear to play an important role and cause flow 
separation and the occurrence of primary and secondary vortices within the sinus 
cavity. The mechanism of the onset of valve closure during the deceleration of the main 
flow is not yet fully understood. Bellhouse & Talbot (1969) and Bellhouse (1969) 
suggested that the trapped vortex within the sinus interacts with the decelerating 
flow field and thus pushes the leaflets into the aorta. However, their description of 
this interaction is not entirely satisfactory; their model results in pressure differences 
across the cusps which seem to be quite large in view of the small mass of the leaflets. 

In  the present investigation attention is focused on the mechanism of valve closure 
as a result of flow deceleration. To that end, experiments were performed in a 
%wo-dimensional geometry. The aorta was represented by a channel of rectangular 
cross-section and the sinus, according to Reid (1970), by a half-cylinder, as shown in 
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FJGVRE 3. Diagram of the two-dimensional set-up of the aortic valve. 

figure 3. The flow pattern and cusp motion were examined for various values of the rate 
of deceleration. Simple fluid -dynamical explanations based on the phenomena observed 
are proposed. The theory is also compared with the experimental results of Bellhouse 
& Talbot (1969). Finally the effect of sinus shape on valve operation is studied. 

2. Two-dimensional model studies 
Qualitative experimentat observations 

The two-dimensional model of the aortic valve has been designed as a rectangular 
duct with a half cylindrical cavity in the upper wall, as shown in figure 3. The set-up 
has been described in more detail by van Steenhoven, van Dongen & Spaan (1976). 
A foil 2pm thick (Makrofol KG) is used as the cusp material. The cusp length L is 
1.5 times the sinus radius R. The flow is visualized by means of the hydrogen-bubble 
technique, as described by Merzkirch (19G8, p. 39). The cathode is a thin (20pm) 
platinum wire positioned in the flow field to be studied. The anode is a stainless-steel 
plate located in such a place that it does not disturb the flow. Hydrogen bubbles are 
produced periodically at  the cathode by a square-wave generator. The flow in the 
two dimensional model of the aortic valve is visualized a t  three different places: (i) 
in front of the aortic valve; (ii) just downstream the aortic valve; (iii) in the sinus. 
The experimental information is recorded on cine film and still photographs. The test 
fluid is water and the channel has a fixed height of 4.5 em and a width of 12 cm. The 
Reynolds number Re, defined as I'h,/v, where l' denotes the maximum (initial) 
velocity of the mainstream, h, the channel height and v the kinematic viscosity, can 
be varied between 2250 and 4500. The Reynolds number Re* for the human aortic 
system, defined as I'alv, where I' is the peak systolic velocity ( - 1 m/s), a the aortic 
radius ( - 1 cm) and v the kinematic viscosity of blood ( N 3 x 1 O--s m2 s-l), has a value 
of the order of 4000 and lies within the experimental range attainable in the model. 
The mainstream can be decelerated a t  a constant rate from the value I r  a t  t = 0 to 
zero a t  t = 7. The Strouhal number St of the model flow, defined as R/I'r, R being the 
sinus radius, can be varied for a given I' by adjusting the deceleration time 7. I n  this 
way St can be varied between oc (stepwise velocity decrease) and 0.045. The Strouhal 
number St* for the human aortic system, based on the sinus radius R ( -  1 cm), the 
peak systolic velocity C and the time difference between maximum aortic flow and the 
onset of flow reversal a t  t = T ( N 0.15 s), has a value of about 0.06. 

The phenomena observed are strongly dependent on the Strouhal nnmber. Figure 
4 (plate 1 )  shows cine pictures of the valve response to a practically stepwise velocity 
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FIGURE 5. (a)  Rigid-body rotation of the contents of the sinus for high Strouhal numbers. 

( b )  Rotation of the leaflet around the point of attachment for low Strouhal numbers. 

decrease. The contents of the cavity rotates almost like a rigid mass around line B 
in the separation plane of the sinus and aorta; see figure 5 (a) .  

For low Strouhal numbers, St c 0.15, the flow pattern is rather different as is 
shown in figure 6 (plate 2): 

(i) The cusp moves slowly into the aorta, its shape does not change and it rotates 
around its point of attachment; see figure 5 (b ) .  

(ii) The velocity profile of the mainstream under the cusp remains virtually flat. 
(iii) In  the aorta a t  the rear of the cusp a region of recirculation is formed. 
I n  all cases a vortex of moderate strength is present in the sinus cavity in the 

stationary situation. The maximum velocities observed in the sinus are about 15 Ol0 
of those in the mainstream. This is illustrated by figure 7 (plate 3). 

Physical models 

Since the phenomena observed depend on the Strouhal number we propose two 
different explanations based on observations and physical arguments, one for high 
Strouhal numbers (St > 0.3) and the other for low Strouhal numbers (St < 0.15). 

High Strouhal numbers 

At the beginning of the deceleration of the mainstream the cusp is practically parallel 
to  the centre-line of the aorta (figure 5 a )  in a plane which will be referred to as the 
rest plane. Deceleration of the liquid in the aorta results in a pressure gradient in the 
axial direction such that the pressure increases downstream. The overall axial pressure 
gradient will generally cause tt complicated fluid velocity distribution inside the 
cavity as well as in the adjacent part ofthe aorta. At a high Strouhal number the fluid 
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in the cavity performs a rigid-body-like rotation around an axis through the centre 
of the rest plane, pushing the cusp into the aorta. 

I n  order to give a simplified description we represent the sinus fluid by a rotatable 
rigid half-cylinder with a specific mass p equal to  that of the fluid. We also assume 
that the fluid motion in the aorta may be considered to  be quasi-one-dimensional, 
which implies that  both the pressure and the velocity are functions of the space co- 
ordinate x and time t only. The pressure and velocity just upstream of the entrance 
plane of the valve are denoted by pO(t )  and uo(t). We now define a closing parameter 
h as the ratio of the smallest height beneath the cusp to  the height of the channel: 
h = h,,,/ho (cf. figure 5a). Then the height of the aorta beneath the sinus fluid is a 
linear function of x; viz. h = h,[l + (1 - A )  x / R ] .  We further assume that the velocity 
v in the transverse direction is much smaller than the axial velocity u, such that 
v/u = O(  J - A )  with I - h -4 1. I n  all equations terms of order (1  - will be neglected. 

From the continuity equation ahlat + a(hu)/ax = 0 we then obtain for the average 
velocity in a cross-section 

(a2 - x2)  dh X 
- - U , ( l - h )  - 

R dt R' u ( x ,  t )  = uo- & 

The pressure is found from Bernoulli's equation: 

Insertion of u ( x ,  t )  from (1) into (2) yields an expression for the pressure distribution 
in terms of u,,, A, du,/dt and dhldt. The axial pressure distribution causes a. torque 
to  act on the contents of the sinus, resulting in rotation of the contents of the sinus 
according to  

where J is the moment of inertia of the contents of the sinus. The angle 8, defined in 
figure 5 (a ) ,  is related t o  A to  first order by 

0 = ( h o / R )  (1 - A ) .  (4) 

(5) 

The moment of inertia of a homogeneous half-cylinder with respect to  its axis of 
symmetry is 

After combining (1)-(4) and neglecting all terms of order ( I  - we find the following 
differential equation relating the rotation of the contents of the sinus to the rate of 
change of the mainstream velocity: 

J = $pa4. 

with initial conditions dhldt = 0,  h = 1 at  t = 0. (7 )  

(8) 

For a stepwise change in velocity u = U[l  - H ( t ) ] ,  H ( t )  being the unit step function, 
the solution becomes 

Then the closing rate dhldt is constznt and depends on both the sinus radius and the 
initial velocity. 

I - -  ~tU/[&rh,+&R].  
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It is questionable whether Bernoulli’s equation in the form (2) is applicable to this 
specific case, since the aseumption v / u  = O(1 - A )  is then certainly not uniformly 
valid. This might affect the second inertia term corresponding to the aortic flow in 
(6). For a stepwise velocity change this leads to a somewhat different value of the 
denominator in (8). 

Low Strouhal numbers 
At a low Strouhal number, of the order of that for the human situation, we observed 
that the cusp remains virtually straight and rotates slowly around its point of attach- 
ment when the main flow is decelerating. The path lines of the flow downstream of the 
cusp remain almost straight, so that no strong tiransverse pressure gradients are 
present. Initially, in the steady case, the maximum velocity within the sinus is much 
smaller than that of the mainstream, and this situation persists during the first phase 
of deceleration. Since also the rate of change of the velocity within the sinus is much 
smaller than the deceleration duo/& in the channel, the function of the cavity is to 
keep the pressure differences small, thus reducing the adverse pressure gradient and 
consequently the deceleration beneath the cusp. This is made possible by the cusp 
motion. 

We shall assume in our model that the cusp remains straight and is able to  rotate 
around its point of attachment. The leaflet cannot withstand a pressure difference 
across it because of its negligible mass. However, by prescribing the leaflet shape, 
this condition cannot be locally imposed upon the cusp. Instead, we take the average 
pressure difference across the cusp to be equal to zero. The sinus pressure is assumed 
to be constant, in view of the arguments given above, and is put equal to the pressure 
a t  the cusp tip. 

Considering the flow to be quasi-one-dimensional and again defining the closing 
parameter h as h,,,/ho (cf. figure S b ) ,  we obtain the following continuity equation 
for the flow beneath the cusp: 

Assuming v / u  to be of order 1 - h and neglecting terms of order (1  - A)2, the Bernoulli 
equation takes the form 

p(x , t )  = po+Jpu;-Jpu2-p- udx‘, j’t j: 
where uo and p ,  denote the velocity and pressure at  the entrance plane of the valve at 
x = 0. Substituting the velocity given by (9) into (10)’ we obtain for the pressure 
distribution to first order 

2 3  d2h x 2 d h  duo 2 2  duo 
p ( 2 , t )  =po+Qp--+puo- - -pPX--( I -A)  L at2 L at at 

By setting the mean pressure difference across the cusp equal to zero, i.e. 
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FIGURE 8 .  The closing behaviuur at different Strouhal numbers ( R  = 4.6 em). x , expcritnent; 
- , model for high St; ---, rnodol for Iuw St. (I&) St = m, U = 5cm/s, T = 0. (a) h't = 0.2,  - 
U = 7 cm/a, T = 3 s. (c) St = 0.06, C = 7 cm/S, 7 = 10s. 

where the pressure in the sinus is taken equal t o  the pressure at the cusp edge 
finally arrive at a differential equation for h of the form 

- + - . 2 - - ( 1 - A )  d2h 1 6 8  dh 4 2 + !  duo = 4-- I duo 
dt2 3 L dt [ 3 z z ]  L d t  

with initial conditions &/dt = 0, h = 1 at t = 0. 

we 

This equation describes the cusp motion as a function of t.ime for small values of 1 - h 
and for relatively low Strouhal numbers. 

Comparison hetu-ten theory and experiment 

In order to compare theory and experiment, valve closure will be discussed for 
different StPotiha1 numbors and various values of thc initid nlsins$ream velocity and 
ahus radius. 

Figure 8 showa the experimentally determined cusp displaccrnent, characterized by 
A, as a function of time for X t  = CG, 0.2 and 0.06 for a Reynolds number of about 3300. 
On %he basis of the volocity variation measured, (6) and (1  3 ), which correspond to the 
%wo different physical models, were solved numerically. For each experiment the 
calculated cusp displacement h is also shown as 8. function of time in figure 8. For 
St > 0.3 the contents of the sinus tends t o  rotate m a rigid mass into the aorta. The 
solution of (61, which is based upon this made1 of rigid rotation, shows fair quantitative 
agreement with the experiment. For Xt < 0.15 it is (13), which is based upon the 
assumption of constant pressure on the sinus side of the cusp, that gives bhe best 
agreement with the experimental obscrvations. For StrouhaI numbers between these 
two different regions, a gradual transition in time is o h e w d  from t h e  one model to 
the other. Initially a rigid-body rotation is observed. After a certain transition time 
the cusp becomes mom and more stretched and the rotation centre moves from the 
sinus c e n t d i n e  towards the point of attachment. For decreasing Strouhal numbers 
the tranaition time docreases and $he initial rigid-rotation phaw becomes of lessening 
importance. 
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FIGURE 9. Relation between the theoretically predicted and the experimentally found closing 
rates after a stepwise decrease in the mainstream velocity. St = co, U = 4, 8 or 13 cm/s, R = 3.0, 
4.0,4.5 or 5.7 cm, 7 = 0.  

For Strouhal numbers of 00 and 0.06, the velocity U and sinus radius R (thus the cusp 
length L = $R) were varied. The theoretical relation (6), which represents the physical 
model for high Strouhal numbers, was tested experimentally by observing the two- 
dimensional contents of the sinus after a stepwise change in the velocity of the main- 
stream. I n  these experiments four different radii and three different initial velocities 
were applied. The experiments indicate a linear relation between the closing parameter 
h and time t which is in agreement with (8).  For each combination of radius and 
initial velocity the measurements were repeated three or four times. By linear regres- 
sion and variance analysis the experimental values for the slope of the linear relation 
between h and t for different radii and initial velocities were determined. Figure 9 
shows a comparison between these experimental values and the theory, together with 
the 95 %reliability interval. From thisgraph wemay concludethat the agreement is fair. 

The physical model for physiological values of the Strouhal number was tested 
experimentally for three different initial mainstream velocities and three different 
valve geometries. The results are shown in figures lO(a)  and ( b ) ;  each experimental 
point is the average result of four experiments; the inaccuracy Ah, based on a 95 yo 
reliability interval, is about 0.02. The cusp displacements as a function of time 
according t o  (13) are compared with the experimental results. The parametric de- 
pendence of the closing rate on the cusp length and initial mainstream velocity 
predicted by the model has indeed been observed experimentally. Theory and experi- 
ment show reasonable agreement for the range of parameters studied, particularly 
when it is realized that the assumptions concerning the pressure on the sinus side of 
the cusp are highly simplified. 
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FIGURE 10. The closing behaviour a t  a Strouhal number in the low Strouhal number range for 
(0) different values o f  the initial mainstream velocity U and ( 6 )  different valve geometries (sinus 
radius R, annex cusp length L)  . 

Expt Theory U(cm/s) St Expt Theory R(cm) L(cm) St 

1 9 0.05 (6 )  __ 1 4.5 6.76 0.06 
2 7 0.06 A -  2 3.75 5.63 0.05 

A -  3 5 0-09 0 -  3 3.0 4.5 0.04 

(0) x __ 
e - -  

R = 4.5cm, T = 10s U = 7cm/s, T = 10s 

3. Application of the model to the simulation experiments of Bellhouse 
and Talbot 

Bellhouse & Talbot (1969) and Bellhouse (1969) reported on experiments with a 
three-dimensional analogue of a valve with an aortic diameter of 2.5cm, which is 
about the size of a human aorta. The valve house was made of Perspex; the cusp 
material was 0.1 mm thick nylon. They tested their valve system in a pulsatile flow 
and measured the valve opening area A as a function of time. The measured flow 
velocity in the model aorta after the onset of deceleration ( t  = 0 )  could be well described 
by a quadratic function of time: uo(t) = U [ l  - ( t / ~ ) ~ ] .  Their experimental results are 
shown as open circles in figure 1 1. 

I n  order to  compare these experimental results with the low Strouhal number 
model, we have to  extend the model to this three-dimensional situation. We assume 
that the cusps are arranged such that, they together form a truncated cone. Then 
under the same assumptions as were made earlier for the two-dimensional case, we 
find for the present axisymmetric system, defining h2 = A(t) /A(O),  the following 

1 duo [ $ :;2] L d t  
(I-A) 4 2 + - - -  = 2 - - - ,  d2A 16 uo d h  -+---- 

at2 3 L at 

equation: 

with initial conditions dh/dt = 0, h = 1 a t  t = 0. 

This equation was solved numerically for quadratic time dependence of the velocity. 
The theoretical result is shown as a solid curve in figure 11,  and here also reasonable 
agreement is found. 
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FIQURE 11. Comparison of the experimental results of Bellhouse (1969) with the present theory. 

0, experiment; -, theory. St = 0.13, U = 65cm/s, R = 1*25cm, 7 = 0.15s. 

4. The influence of the shape of the sinus of Valsalva on valve closure 
To study the role of the sinus of Valsalva in valve closure at  the physiological value 

of the Strouhal number, two further series of experiments were performed in the 
two-dimensional analogue of the aortic valve. First, valve closure was investigated 
when the sinus cavitiy was partly deformed. This was done by filling the outer segment 
of the sinus with solid material. The rate of valve closure for different values of the 
sinus height is shown in figure 12(a). The sinus height can be reduced to less than 
half of its original value without a noticeable change in valve closure. However, the 
more the height of the cavity is reduced below this value, the more the closure is 
hampered. 

In  the second series the sinus radius R was changed, keeping the cusp length L 
constant. A larger ratio of sinus radius to cusp length than the physiological one 
appears to result in a faster closure, which also agrees better with the theory 
(figure 12b) .  

In  both figures each experimental point has, analogously to  figure 10, an inaccuracy 
of Ah = 0.02. The experimental observations show that for the mechanism of valve 
closure in the deceleration phase of systole the presence of a cavity of a certain 
minimum size is essential. Next, the experiment reveals that there is some freedom 
as to the shape of the cavity, and that some extension of the cavity in the axial 
direction may have a favourable effect on valve closure. 
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FIQURE 12. The influence of  the sinus shape on valve closure ( U  = 7 cm/s, T = 10 9). (a) At 
different sinus heights b ( R  = 4.5cm). Experiment: @, b = 0; A, b = 0.212; 0 ,  b = R. (b )  At 
different sinus radii R ( L  = 4.5cm). Experiment: 0. R = 3.0cm, St = 0.04; A ,  R = 4.5cm, 
St = 0.06. ---, theory. 

5. Discussion 
One of the main conclusions from the present experiments is that  the flow pheno- 

mena and the cusp motion are strongly dependent on the Strouhal number. For 
physiological applications, the low Strouhal number experiments and analysis are the 
most important ones. A simplified quasi-one-dimensional description of the flow in 
the core beneath the cusp, combined with an assumption of constant pressure on the 
sinus side of the cusp, appears to  give a good qualitative idea of the initial phase of 
valve closure. 

The situation of a decelerating flow, starting from a steady state, is different from 
that of a pulsatile flow, in which the viscous forces along the wall and the leaflet may 
generate, during the acceleration of the fluid, a strong vortex which is trapped in the 
sinus cavity. This unsteady vortex is probably stronger than the steady one observed 
in the present experiments. The presence of such a strong vortex may cause a pressure 
distribution in the plane of the leaflet which is different from that under our experi- 
mental conditions. However, the fair agreement between the low Strouhal number 
model, based on the assumption of a constant pressure in the sinus cavity, and the 
experiments of Bellhouse & Talbot suggests that  the presence of such a stronger 
trapped vortex does not essentially affect the mechanism of valve operation. 

The shape of the sinus is not very critical. The disagreement between Swanson & 
Clark and Reid concerning the sinus geometry is therefore not very relevant for the 
mechanism of valve closure. 

We wish to  thank Prof. dr. P. C. Veenstra, Prof. dr. G .  Vossers and Dr J. A. E. 
Spaan for their valuable comments, Mr N. A. L. Touwen for his computer assistance 
and Mr A. A. M. Wasser for his Iaboratory assistance. We also thank all those students 
who contributed t o  this project. 
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t =o 

Plate 1 

t =0.36s. 

t =1;13s t =1.39s 

FIGURE 4. Cine pictures of the motion of the leaflet for a stepwise decrease in the 
mainstream velocity (St = co, U = 5 cm/s, R = 4.5 cm, 7 = 0). 

VAN STEENHOVEN AND VAN DONGEN (Facing p .  32) 
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r =O 

Plate 2 

f =1.97s 

t =6.06s f =7.47s 

FIGURE 6. Gin6 pictures of the inotioii of t ho  leaflet for a gradual docrloratioii of 
the mainstream (St = 0.06, U = 7cin/s, R = 4,5crn,7 = 10s). 
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